|
Post by Ceratodromeus on Apr 23, 2016 9:06:01 GMT 5
I remember when i was younger i had a berber's skink, who my dad had taught to know when his food was coming -- he would scratch the enclosure's lid to get his attention before dropping crickets in. for as long as he lived, he would look up expectedly whenever someone would scratch the lid. was a smart little guy, had he not been WC he probably would have lived a lot longer. Anyway, this reminiscence was brought upon by reading this paper on the behavioral flexibility of a tropical anole. Behavioural flexibility and problem-solving in a tropical lizard"The role of behavioural flexibility in responding to new or changing environmental challenges is a central theme in cognitive ecology. Studies of behavioural flexibility have focused mostly on mammals and birds because theory predicts that behavioural flexibility is favoured in species or clades that exploit a diversity of habitats or food sources and/or have complex social structure, attributes not associated with ectothermic vertebrates. Here, we present the results of a series of experiments designed to test cognitive abilities across multiple cognitive modules in a tropical arboreal lizard: Anolis evermanni. This lizard shows behavioural flexibility across multiple cognitive tasks, including solving a novel motor task using multiple strategies and reversal learning, as well as rapid associative learning. This flexibility was unexpected because lizards are commonly believed to have limited cognitive abilities and highly stereotyped behaviour. Our findings indicate that the cognitive abilities of A. evermanni are comparable with those of some endothermic species that are recognized to be highly flexible, and strongly suggest a re-thinking of our understanding of the cognitive abilities of ectothermic tetrapods and of the factors favouring the evolution of behavioural flexibility." "Anolis evermanni, three males and three females, were collected in Puerto Rico and transported to our laboratory. Lizards were housed independently in cages (29 L, 21 W and 21 H cm), and kept under 12 L : 12 D photoperiod cycle, at 28°C and 60 per cent relatively humidity, watered daily and fed crickets on a regular schedule throughout the experimental period. Behavioural experiments were conducted in the cage where the lizards were housed. The behavioural testing apparatus was placed inside the cage, and lizards had 15 min to perform the task. The apparatus was an opaque grey platform (12 L, 5.5 W cm) containing two wells, each 1.6 cm in diameter and 1 cm deep. The wells were covered by a tight-fitting 2.5 cm diameter opaque-coloured circular disc, concealing their contents (figure 1). A reward (freshly killed, intact larva of Hermetia illucens) was placed inside a well, and the lizard had to remove the disc to reach the larva. Individuals were habituated to the testing apparatus before conducting the experiments. Habituation was performed in three sequential steps: (i) the apparatus was placed inside the cage with a reward inside one well; (ii) the blue disc was positioned next to the well containing the reward; (iii) the blue disc was positioned covering half of the well containing the reward. During the habituation period, individuals did not need to manipulate the disc to access the worm. Individuals advanced stages or completed an experiment when they correctly performed the task six consecutives times. Trials were video-recorded. Once the habituation period was completed, a uniform-coloured blue disc was tightly fitted to one of the wells and the lizards were presented with the novel problem of dislodging the target to access the larva. Only one disc was used and its position was randomly determined before each trial. Individuals conducted one trial per day. Lizards that learned to dislodge the disc performed two discrimination experiments in which a target (i.e. stimulus used for the motor task) and a distracter (i.e. a solid-coloured yellow disc for experiment 1 and a disc formed by yellow and blue concentric rings for experiment 2) were presented simultaneously. Position of the stimuli was randomly determined before each trial. The reward was placed under the target, and larva odour was placed inside both wells. Choice was scored as the first stimulus dislodged by the lizard. To further control for smell, in 25 of the trials a larva was placed under both stimuli; each lizard performed a minimum of five trials under this condition. In 23 out of the 25 trials (p < 0.001, binary choice test), the lizards chose the target." link
|
|
|
Post by Ceratodromeus on Sept 20, 2016 21:18:51 GMT 5
Rapid problem solving in juvenile black throated monitors link to study
|
|
|
Post by Ceratodromeus on Dec 3, 2016 7:55:06 GMT 5
Target training in Cuban crocodiles and an emerald tree monitor
|
|